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Perturbative calculation of one-point functions of one-dimensional single-species
reaction-diffusion systems
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Perturbations around autonomous one-dimensional single-species reaction-diffusion systems are investi-
gated. It is shown that the parameter space corresponding to the autonomous systems is divided into two parts:
In one part, the system is stable against the perturbations, in the sense that the largest relaxation time of the
one-point functions changes continuously with perturbations. In the other part, however, the system is unstable
against perturbations, so that any small perturbation drastically modifies the large-time behavior of the one-
point functions.

DOI: 10.1103/PhysRevE.70.011103 PACS nuni)er05.40—a, 02.50.Ga

I. INTRODUCTION In [34], the two-point functions of autonomous single-
Reaction-diffusion systems are a well-studied aregSPecies translationally invariant one-dimensional reaction-

Reaction-diffusion systems, using analytical techniques, a diffusion systems were studied. The two-point function for

proximation methods, and simulation, have been studieoSUCh systems was obtained, and it was shown that it exhibits
The approximation méthods may be di;‘ferent in different di_a nontrivial dynamical phase structure. The dynamical phase

mensions, such as, for example, mean-field techniques, a%ructure of the system was also investigated.

good for high dimensions, and generally do not give correc{enlg tvr\}'hsic?]rtfrls ’nv(\f evxgg»; toaﬂtsoengrer:;ltrs agggrltoaslﬁjodnyo? ol
results for low-dimensional systems. A large fraction of ana- y ' y

lytical studies belong to low-dimensionaéspecially one- mous. By this, it is meant that the rates of these systems are

: : : e . equal to those of an autonomous system, plus a small pertur-
dimensional systems, as solving low-dimensional SyStems’bation. The scheme of the paper is the following. In Sec. Il,

should in principle be easi¢i—13. . .
One of the reasons scientists want to find and solve ex@utonomous systems are briefly introduced. In Sec. Ill, non-

; . tonom rturbations aroun tonom tems ar
actly solvable systems is that one can use perturbative methR oNomous pertu bations around autonomous systems are

ods to investigate other systems, which are not exactly Solvgonsudered, and their effect on the evolution of one-point

able but near some exactly solvable systems. The termfunctlons is investigated. From this investigation, it turns out

“exactly solvable” has been used with different meanings.that some of the autonomous systems are unstable with re-

Forcxampl, 1114-14, sohabity (r nterabity means - £0°c1  PErubaline b e sense tal any sma petia
that theN-particle conditional probabilitiesS matrix is fac- oint function)é Section IV is dgvoted to a concrete example
torized into a product of two-particl& matrices, while in P ' pie.

[17-24, solvability means closedness of the evolution equa-
tion of the empty intervalgor their generalization
In [27], a ten-parameter family of reaction-diffusion pro- Il. AUTONOMOUS SYSTEMS AND THE EVOLUTION

cesses was introduced for systems among which the evolu- EQUATIONS

tion equation ofh-point functions contains onlg- or fewer- To fix the notation, let us briefly introduce the autono-
point functions. We call such systems autonomous. Therenouys systems. Consider a one-dimensional periodic lattice,
for these models the average particle number in each site Wasyery point of which either is empty or contains one particle.
obtained exactly. 128,29, this has been generalized to | et the lattice haveL+1 sites. The observables of such a
multispecies systems and more-than-two-site interactions. system are the operatol’, wherei with 1<i<L+1 de-
Among the important aspects of reaction-diffusion sys-notes the site number, ang=0,1 denotes the hole or the
tems is the phase structure of the system. The static phaggrticle: N° is the hole(vacancy number operator at sitie

structure concerns the time-independent profiles of the sysyyq NI is the particle number operator at siteOne has
tem, while the dynamical phase structure concerns the evgspyiously the constraint

lution of the system, especially its relaxation behavior. In

[30-33, the phase structures of some classes of single- or s,N*=1, (1
multiple-species autonomous reaction-diffusion systems

have been investigated. These investigations were based (\Svnheres Is a covector the components of whigy's) are all

the one-point functions of the systems. equal to 1. Th_e constraintl) s_lmply says that every site
either is occupied by one particle or is empty. A representa-

tion for these observables is
o -— DY o ..
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whereN® is a diagonal X 2 matrix the only nonzero ele- tions of nj’s. The evolution equation for the one-point func-
ment of which is thexth diagonal element, and the operatorstion is
1 in the above expression are als& 2 matrices. It is seen

that the constraintl) can be written as a<ni> =a, Ss Haﬁyﬁ (NYNS ) +s, ag Haﬁyﬁ (N7, NY).
s-N=1, ®3)

whereN is a vector the components of which av&’'s. The
state of the system is characterized by a vector

(13

It is seen that the right-hand side of the above equation con-
tains two-point functions. In fact, in the evolution equation
PeVe - ---®V, of n-point functions, there are generally up o+ 1)-point
—_— . .
L4l (4)  functions. However, there are systems for them in the evolu-
tion equation ofn-point functions, only up ta-point func-

whereV is a two-dimensional vector space. All the elementstions arise. These are the autonomous systems. For a system

of the vectorP are non-negative, and with the HamiltonianH® to be autonomous, certain con-
S.p=1. (5) straints should hold among the reaction rd&s-29:
e 40 —€ 40 e 10
Here S is the tensor product df+1 covectorss. AT 5= 1 AT, S5 2 ATS,, (14)

As the eigenvalues of the number operafdfsare O or 1 \yhere
(and hence these operators are idemptém most general

observable of such a system is the product of some of these lea'yﬁ: =Sp Hoaﬁy(s,
number operators or a sum of such terms. Also, the con-
straint(1) shows that the two components Nf are not in- ZA% 5 =s5 HOPe . (15)

dependent. So one can express any functid;afi terms of . i
The constraints mean that the left-hand side of @¢) can

n:=a-N;, (6) be decomposed as the right-hand side of @4). It is not

wherea is an arbitrary covector not parallel ©Our aim is difficult to see that the constrain{é4) are equivalent to

to study the evolution of the one-point functios;)’s). H'u®@u=\Nu®u, (16)
The evolution of the state of the system is given by

where
P=H P, (7) ( 1 ) w
I . . L u.= )
where the Hamiltoniark is stochastic, by which it is meant -1
that its nondiagonal elements are non-negative and L .
and it is obvious that
SH=0. ®) s-u=0. (18)
t1;]r(1eef:)nrtn(:racnon is nearest neighbor iff the Hamiltonian is OfNow, consider an autonomous system satisfying the con-
straints (14) [or equivalently(16)], and take the vectov
L+1 satisfying
H =2 Hij, ©) 2
i=1 ( E g.AO)V:O,
where de=1
Hi=1® - ®19H®1® --- ®1.
Li+l , ) S:-Vv= 1, (19)
i1 L-i (10
) and the covectoa such that
[It has been assumed that the sites of the system are
identical—that is, that the system is translation invariant. a-u=1, a-v=0; (20

Otherwise,H in the right-hand side of Eq10) W,O‘_J'd de-  thatis, the basi&, s} is dual to{u,v}. In [28,29, it is shown
pend oni.] The two-site Hamiltoniar is stochastic; that is, that the matrix on the left-hand side of the first equation in

|ths ncind|agona:c elemhenft§ arelnon—negat'wr?, a.md the sum gs. (19 has a left eigenvector with the eigenvalue zero.
the elements of each of Its columns vanishes: (This left eigenvector is.) So it does have a right eigenvec-

(s® 9)H =0. (11) tor with the eigenvalue zero as well. That is, there does exist
) a vectorv satisfying Eqs(19). In fact, one can even find a
Using real vectorv satisfying Eqs(19). From now ona in Eq. (6)
s@s(@a-N)® (b-N)H=a,bgH? ;5@ sN"® NS is assumed to satisfy Eq&0).
(12 Ill. PERTURBATIONS AROUND AUTONOMOUS

. . SYSTEMS
wherea andb are arbitrary covectors, one can write down

the evolution equations of the one-, two-, or morepoint func- Consider a system with the Hamiltoni&has
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H=H"+6H, (21) HO = HO+ 1T HO 11, (29)

whereHC is the Hamiltonian of an autonomous system, and . . .
. wherell is the permutation matrix. These parameters can be

the rates corresponding @H are small compared to those .

; 0 ; . . .~ rewritten as
corresponding td1®. Our task is to investigate the evolution
of one-point functions corresponding kb, using perturba-
tion. AsH is not necessarily autonomous, the evolution equa-
tion of the one-point function may contain two-point func-
tions as well. Howevgr, the terms containing the two-point WP=seaH'veu,
functions are proportional to the rates correspondingHo
and hence are small. So one can calculate the two-point func-
tion corresponding to the unperturbed system and use it in \O: = }a® aH'u®u
the evolution equation of the one-point function of the per- 2 ’
turbed system to obtain up-to-first-order evolution of the

one-point function of the perturbed system. 0 -
pr=a®aH u®v,

uw=seaHuev,

A. Unperturbed solution

Assuming that the initial condition is translationally in- o _ -
variant, it is seen that the one-point function is independent oh=zavaHivev. (30)
of the site and the two-point function depends on only the
difference of the sites’ numbers. So the evolution equatiommaking a solution like
for the one-point function of the unperturbed system is
4fo FO(t) = 2 F eo(0)exp(E%), (31)
— = (p0+Of°, (22) E?
dt
it was shown in[34] that the values oE° (energy values

h - . -
where entering the two-point function are &;:=u°+1° and any
0 =(n,)° (23)  number in the intervaly: =[21°-2| u0],20°+2| u°|], and
and possibly
0_ 0 0 0)2
p=seaH usv+awsH vau, Eg::)\0+vo+)\(éu_)v0' 32)

P=seaHveu+a®sH uov. (24) 0. . _
E, is among the possible values B iff
The one-point functiorf® is easily seen to be

0 0o_.0
£(t) = () exef (© + O)t]. (25) =202 (33
Also, taking The relation ofEJ, E2, andl, determines the relaxation be-
0 havior of the two-point functiorfits dynamical phage De-
Fr: = (N Nie)° (26) pending on the reaction rates several phases may §84jir
(the two-point function of the unperturbed sysberone ar- ) Ege lo, and Eg is not an energy. This is the slower
rives at phase, and the longest relaxation timg-€(1°- u° ™
4F° (I E9ely, andEJ is an energy, in fact the largest one.
— = OFL AR )+ 20 R, 1<i<lL, This is the slowest phase, and the longest relaxation time is
dt (=P NO=[(WOP (= ) Iy
o () E§’>I0, and Eg is not an energy. This is the fastest
dF 0 0., 0. 00, 04+0. 0 phase, and the longest relaxation timg-¢1°+u%]™2.
q K R (AN o (27) (IV) E2>1,, ESis an energy, an&#3<E?. This is the fast

phase, and the longest relaxation timg-v°+ u0) 1.
(V) E9> 1o, ESis an energy, andy> ES. This is the slow
\N:za®aH'u®u, phase, and the longest relaxation time {sv°-\°
=22/ (\0= )]

where

ph=a®aHU®Vv+veu),
B. Perturbed solution

0. — 0
or=avativev. (28) Now consider the Hamiltoniamd, defined through Eq.

It is seen that only five parameters enter the evolution equa21), which is not necessarily autonomous. Then defining
tion of the up-to-two-point functions, and all of these can be®A,; like Egs.(15) but with H instead ofH, it is seen that
expressed in terms of the matrix elements of the evolution equation of the one-point function is
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d<ni> a @
T AT ANINGD + 2, AT ANDND. (39

However, one cannot necessarily decompt4g,; like Eq.

(14). Assuming translational invariance of the initial condi-

tions, one arrives at

 =a,(1A7 4 247 )Y @9
where
fr=(my),
FY% = (NN (36)

As {u,v} is a basis, one can writé,; in terms of the tensor
products ofu andv. The corresponding coefficients can be

found by multiplying the tensor products afands by F;.
The result is

Fz(s: Fouu? + f(uv? + 0 ud) + 000 (37)
So
df 1 2 5 P B
i a,("AY 5+ “AYH[FuM + F(U 7+ 070 + v"?].
(38)
Defining
B 5 = CA% 5= CA% s, (39
Eq. (38) recasts to
df 1 40« 1 40« 2 40« 2 40« 1pa
a :aa(lA y 55+2A 5Sy+ 1./4 ¥ 55+2A 557"' B ¥é
+ 2IS""Y(S)[F1UYU5+ f(u?+ 00 + v
= (u0+ 10 + (1B, s+ 2B, ) [F1uu’ + f(u0’ + v7U?)
+u?], (40)
where
°B,s =a, B s (41

As expected, the coefficients Bf on the right-hand side are
small(first order in terms of the perturbatiaid). So one can
use the zeroth-order value &% on the right-hand side to

obtain the first-order value df.

From Egs(25) and(27), it is seen that iES> I, then one

can write
0_F0 p° 0
LS S it (42
wherez satisfies
wO+ 0= uo(z+ 727 + 21°, (43

and its modulus is less than 1, aﬁ@ is like Eq.(31), but
without a term corresponding to the energy vakg= u°
+1°. So one can write Eq40) as

PHYSICAL REVIEW E 70, 011103(200%

0
e um?
YTl e Tha 4

df
Pl (0 + 9+ (*Bs+ 2875)<
+ zﬂu5>f +('B,s+ 2By,s)(ﬁluyufh o). (44)

This means that the energy values enteffirege those enter-
ing FY and

p
E i=u+v+ 80, 45
1. =TV MO_)\O_MOZ ( )
where
wi=pl+ ou,
v.=v + Ov,
5,u:=s®a§gu®v,
5v:=s®a5ﬁv®u,
60::a®séﬁu®u, (46)
and
SH:=6H +11 &H I1. (47)

This shows that ifE‘l’ is the largest nonzero energy value
enteringFg, thenE; is the largest nonzero energy value en-
tering f. Otherwise, the largest nonzero energy value entering
f is the largest nonzero energy value enterﬁﬁg So the
relaxation behavior of can be deduced from that &% as
follows.

(I) In this phase the largest nonzero energy valué isf
2(1P-u%, and the perturbation causes a discontinuous
change of the largest nonzero energy value, frEfFF,uo
+1° to 2(°- uO).

(11, V) In this phase the largest nonzero energy valué of
is Eg, and the perturbation causes a discontinuous change of
the largest nonzero energy value, fr@= u°+1° to ES.

(I, IV) In this phase the largest nonzero energy value of
f is E4, and the perturbation causes a continuous change of
the largest nonzero energy value, frcﬁ% to E;.

It is seen that the perturbation causes two different
changes in the relaxation behavior fofthe one-point func-
tion). In regions I, Il, and V, the perturbation causes a dis-
continuous change in the relaxation behavior, which means
that the autonomous system is unstable with respect to per-
turbations. In regions Ill and IV, however, the relaxation be-
havior of f is continuous with respect to the perturbations,
which means that the autonomous system is stable with re-
spect to the perturbations, at least as long as first-order per-
turbations of the one-point function are considered. Mention-
ing one other thing is also in ordelFfl’ enters the evolution
equation off iff §6+ 0. If §6=0, thenf would contain only
one(nonzerg energy value, which is the one expected from
changing one autonomous system to anott@nly u° is
replaced byu and1? is replaced byv.)
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i @@ — AA  with the ratél - w)/4,
(-lv 0) (-1/ 3, 0) ](0, 0) (lv 0) —tto, /W
AA— @A, with the rat¢l — w)/4,
I v
AA— AP, with the rat¢l — w)/4,
v AA— @ @ ith th 1 14 50
. with the rater +[(1 - .
I (~1/3,-2/3) I - [(1-w)/4]. (50
For this Hamiltonian, one has
- 1(1
SRS @A) ©-D a-n V= 5( 1) ’
FIG. 1. Dynamical phase structure in the plafeu®/+°,
—-\%/19). The thick line is the boundary between effectively autono- a= }(1 1) (51)
mous systemgright side of the boundajyand effectively nonauto- 2 ’

nomous systemgdeft side of the boundapy

and
A real autonomous system would in fact be only approxi- wW=-1-2r+ 20,
mately autonomous. This means that there are always pertur-
bations around the autonomous system. The above argument P=-1-2r,
shows that only autonomous systems in regions Ill and IV
can be effectively autonomous. The parameter space corre- 1
sponding to the effectively autonomous systems is \0=- >~ r,
0
w1
- Ty pP=r. (52)
N (= Y0 = 1 +4[1 + 3= w0 —(_ .0/ 0 For the perturbation, consider the Hamiltonian
N Cuv) 21N+ 3w )] = ( u/v)]_
10 2 -1000
48 0O 00O
(48) H=¢ . (53)
Figure 1 shows the regions corresponding to the autonomous 0 000
system(This is identical to Fig. 1 irj34].) 1 00O
It is easy to see that this Hamiltonian does not correspond to
IV. EXAMPLE an autonomous system. This Hamiltonian only increases the

] o ) rate of the reactioMA— @ @ by . Using this Hamiltonian,
Consider a Hamiltoniami® corresponding to an autono- it is seen that

mous system:

-3+3w w w 1-w

1 l1-o -3w w 1-w ov=—g,

HO=—
4 l1-w o —-3w l-w
l1-w ) o —-3+3w 00=~2¢. (54)
100 0 From Egs.(52), it is seen that
0
0O 00 1 M 1)
B4
+r 0 00 1 (49) 0 T+
100 -2 w1
The reactions of the corresponding system are "o TS (59
@A — any other state, with the rate/4, Comparing this with Eq(48), it is seen that the system is
effectively autonomous iff
A® — any other state, with the rate/4, E_E
o> —8‘ (1+2n). (56)

DD — DA, with the rater +[(1 - w)/4],

As a special case of the above example, let usysit. In
DD —AD, with the rater +[(1 - w)/4], this case, for the nonperturbed system we have the reactions
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@A — any other state, with the rate 1/4, 1
r<r0::§+’—g. (58)
A @ — any other state, with the rate 1/4, !

DD — @A, with the rater,

It is seen that changing the value pbffrom 0 to +o, the
system starts from phase lll, passes through phases 1V, V,
, and Il, and finally reaches phase I. Atr,, the system goes

AA— @ @, with the rater. (57)  from phase IV to phase V, which means that the system is no
In this case, the system is effectively autonomous iff longer effectively autonomous.

DD —AD, with the rater,
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