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Perturbations around autonomous one-dimensional single-species reaction-diffusion systems are investi-
gated. It is shown that the parameter space corresponding to the autonomous systems is divided into two parts:
In one part, the system is stable against the perturbations, in the sense that the largest relaxation time of the
one-point functions changes continuously with perturbations. In the other part, however, the system is unstable
against perturbations, so that any small perturbation drastically modifies the large-time behavior of the one-
point functions.
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I. INTRODUCTION

Reaction-diffusion systems are a well-studied area.
Reaction-diffusion systems, using analytical techniques, ap-
proximation methods, and simulation, have been studied.
The approximation methods may be different in different di-
mensions, such as, for example, mean-field techniques, are
good for high dimensions, and generally do not give correct
results for low-dimensional systems. A large fraction of ana-
lytical studies belong to low-dimensional(especially one-
dimensional) systems, as solving low-dimensional systems
should in principle be easier[1–13].

One of the reasons scientists want to find and solve ex-
actly solvable systems is that one can use perturbative meth-
ods to investigate other systems, which are not exactly solv-
able but near some exactly solvable systems. The term
“exactly solvable” has been used with different meanings.
For example, in[14–16], solvability (or integrability) means
that theN-particle conditional probabilities’S matrix is fac-
torized into a product of two-particleS matrices, while in
[17–26], solvability means closedness of the evolution equa-
tion of the empty intervals(or their generalization).

In [27], a ten-parameter family of reaction-diffusion pro-
cesses was introduced for systems among which the evolu-
tion equation ofn-point functions contains onlyn- or fewer-
point functions. We call such systems autonomous. There,
for these models the average particle number in each site was
obtained exactly. In[28,29], this has been generalized to
multispecies systems and more-than-two-site interactions.

Among the important aspects of reaction-diffusion sys-
tems is the phase structure of the system. The static phase
structure concerns the time-independent profiles of the sys-
tem, while the dynamical phase structure concerns the evo-
lution of the system, especially its relaxation behavior. In
[30–33], the phase structures of some classes of single- or
multiple-species autonomous reaction-diffusion systems
have been investigated. These investigations were based on
the one-point functions of the systems.

In [34], the two-point functions of autonomous single-
species translationally invariant one-dimensional reaction-
diffusion systems were studied. The two-point function for
such systems was obtained, and it was shown that it exhibits
a nontrivial dynamical phase structure. The dynamical phase
structure of the system was also investigated.

In this article, we want to use perturbation to study sys-
tems which are not exactly autonomous, butnearly autono-
mous. By this, it is meant that the rates of these systems are
equal to those of an autonomous system, plus a small pertur-
bation. The scheme of the paper is the following. In Sec. II,
autonomous systems are briefly introduced. In Sec. III, non-
autonomous perturbations around autonomous systems are
considered, and their effect on the evolution of one-point
functions is investigated. From this investigation, it turns out
that some of the autonomous systems are unstable with re-
spect to perturbations, in the sense that any small perturba-
tion drastically modifies the large-time relaxation of the one-
point functions. Section IV is devoted to a concrete example.

II. AUTONOMOUS SYSTEMS AND THE EVOLUTION
EQUATIONS

To fix the notation, let us briefly introduce the autono-
mous systems. Consider a one-dimensional periodic lattice,
every point of which either is empty or contains one particle.
Let the lattice haveL+1 sites. The observables of such a
system are the operatorsNi

a, where i with 1ø i øL+1 de-
notes the site number, anda=0,1 denotes the hole or the
particle: Ni

0 is the hole(vacancy) number operator at sitei,
and Ni

1 is the particle number operator at sitei. One has
obviously the constraint

saNi
a = 1, s1d

wheres is a covector the components of which(sa’s) are all
equal to 1. The constraint(1) simply says that every site
either is occupied by one particle or is empty. A representa-
tion for these observables is

s2d
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whereNa is a diagonal 232 matrix the only nonzero ele-
ment of which is theath diagonal element, and the operators
1 in the above expression are also 232 matrices. It is seen
that the constraint(1) can be written as

s ·N = 1, s3d

whereN is a vector the components of which areNa’s. The
state of the system is characterized by a vector

s4d

whereV is a two-dimensional vector space. All the elements
of the vectorP are non-negative, and

S ·P = 1. s5d

HereS is the tensor product ofL+1 covectorss.
As the eigenvalues of the number operatorsNi

a are 0 or 1
(and hence these operators are idempotent), the most general
observable of such a system is the product of some of these
number operators or a sum of such terms. Also, the con-
straint (1) shows that the two components ofNi are not in-
dependent. So one can express any function ofNi in terms of

ni: = a ·Ni , s6d

wherea is an arbitrary covector not parallel tos. Our aim is
to study the evolution of the one-point functions(knil’s).

The evolution of the state of the system is given by

Ṗ = H P, s7d

where the HamiltonianH is stochastic, by which it is meant
that its nondiagonal elements are non-negative and

S H = 0. s8d

The interaction is nearest neighbor iff the Hamiltonian is of
the form

H = o
i=1

L+1

Hi,i+1, s9d

where

s10d

[It has been assumed that the sites of the system are
identical—that is, that the system is translation invariant.
Otherwise,H in the right-hand side of Eq.(10) would de-
pend oni.] The two-site HamiltonianH is stochastic; that is,
its nondiagonal elements are non-negative, and the sum of
the elements of each of its columns vanishes:

ss ^ sdH = 0. s11d

Using

s ^ ssa ·Nd ^ sb ·NdH = aabbHab
gds ^ sNg

^ Nd,

s12d

wherea and b are arbitrary covectors, one can write down
the evolution equations of the one-, two-, or morepoint func-

tions of ni’s. The evolution equation for the one-point func-
tion is

d

dt
knil = aa sb Hab

gd kNi
g Ni+1

d l + sa ab Hab
gd kNi−1

g Ni
dl.

s13d

It is seen that the right-hand side of the above equation con-
tains two-point functions. In fact, in the evolution equation
of n-point functions, there are generally up tosn+1d-point
functions. However, there are systems for them in the evolu-
tion equation ofn-point functions, only up ton-point func-
tions arise. These are the autonomous systems. For a system
with the HamiltonianH0 to be autonomous, certain con-
straints should hold among the reaction rates[27–29]:

eA0a
gd = 1

eA0a
g sd + 2

eA0a
dsg, s14d

where
1A0a

gd: = sb H0ab
gd,

2A0a
gd: = sb H0ba

gd. s15d

The constraints mean that the left-hand side of Eq.(14) can
be decomposed as the right-hand side of Eq.(14). It is not
difficult to see that the constraints(14) are equivalent to

H0 u ^ u = l u ^ u, s16d

where

u: = S 1

− 1
D , s17d

and it is obvious that

s ·u = 0. s18d

Now, consider an autonomous system satisfying the con-
straints (14) [or equivalently(16)], and take the vectorv
satisfying

S o
d,e=1

2

e
dA0Dv = 0,

s ·v = 1, s19d

and the covectora such that

a ·u = 1, a ·v = 0; s20d

that is, the basisha,sj is dual tohu ,vj. In [28,29], it is shown
that the matrix on the left-hand side of the first equation in
Eqs. (19) has a left eigenvector with the eigenvalue zero.
(This left eigenvector iss.) So it does have a right eigenvec-
tor with the eigenvalue zero as well. That is, there does exist
a vectorv satisfying Eqs.(19). In fact, one can even find a
real vectorv satisfying Eqs.(19). From now on,a in Eq. (6)
is assumed to satisfy Eqs.(20).

III. PERTURBATIONS AROUND AUTONOMOUS
SYSTEMS

Consider a system with the HamiltonianH as
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H = H0 + dH, s21d

whereH0 is the Hamiltonian of an autonomous system, and
the rates corresponding todH are small compared to those
corresponding toH0. Our task is to investigate the evolution
of one-point functions corresponding toH, using perturba-
tion. AsH is not necessarily autonomous, the evolution equa-
tion of the one-point function may contain two-point func-
tions as well. However, the terms containing the two-point
functions are proportional to the rates corresponding todH
and hence are small. So one can calculate the two-point func-
tion corresponding to the unperturbed system and use it in
the evolution equation of the one-point function of the per-
turbed system to obtain up-to-first-order evolution of the
one-point function of the perturbed system.

A. Unperturbed solution

Assuming that the initial condition is translationally in-
variant, it is seen that the one-point function is independent
of the site and the two-point function depends on only the
difference of the sites’ numbers. So the evolution equation
for the one-point function of the unperturbed system is

df0

dt
= sm0 + n0df0, s22d

where

f0: = knil0 s23d

and

m0 = s ^ a H0 u ^ v + a ^ s H0 v ^ u,

n0 = s ^ a H0 v ^ u + a ^ s H0 u ^ v. s24d

The one-point functionf0 is easily seen to be

f0std = f0s0dexpfsm0 + n0dtg. s25d

Also, taking

Fi
0: = knk nk+il0 s26d

(the two-point function of the unperturbed system), one ar-
rives at

dFi
0

dt
= m0sFi−1

0 + Fi+1
0 d + 2n0 Fi

0, 1 , i , L,

dF1
0

dt
= m0 F2

0 + sn0 + l0dF1
0 + r0 f0 + s0, s27d

where

l0: = a ^ a H0 u ^ u,

r0: = a ^ a H0su ^ v + v ^ ud,

s0: = a ^ a H0 v ^ v. s28d

It is seen that only five parameters enter the evolution equa-
tion of the up-to-two-point functions, and all of these can be
expressed in terms of the matrix elements of

H̄0: = H0 + P H0 P, s29d

whereP is the permutation matrix. These parameters can be
rewritten as

m0: = s ^ a H̄0 u ^ v,

n0: = s ^ a H̄0 v ^ u,

l0: =
1

2
a ^ a H̄0 u ^ u,

r0: = a ^ a H̄0 u ^ v,

s0: =
1

2
a ^ a H̄0 v ^ v. s30d

Taking a solution like

Fi
0std = o

E0

Fi E0
0 s0dexpsE0td, s31d

it was shown in[34] that the values ofE0 (energy values)
entering the two-point function are 0,E1

0: =m0+n0, and any
number in the intervalI0: =f2n0−2um0u ,2n0+2um0u g, and
possibly

E2
0: = l0 + n0 +

sm0d2

l0 − n0 . s32d

E2
0 is among the possible values ofE0 iff

um0u ø l0 − n0. s33d

The relation ofE1
0, E2

0, and I0 determines the relaxation be-
havior of the two-point function(its dynamical phase). De-
pending on the reaction rates several phases may occur[34]:

(I) E1
0P I0, and E2

0 is not an energy. This is the slower
phase, and the longest relaxation time isf−2sn0−m0dg−1.

(II ) E1
0P I0, andE2

0 is an energy, in fact the largest one.
This is the slowest phase, and the longest relaxation time is
h−n0−l0−fsm0d2/ sl0−n0dgj−1.

(III ) E1
0. I0, andE2

0 is not an energy. This is the fastest
phase, and the longest relaxation time isf−sn0+m0dg−1.

(IV ) E1
0. I0, E2

0 is an energy, andE2
0,E1

0. This is the fast
phase, and the longest relaxation time isf−sn0+m0dg−1.

(V) E1
0. I0, E2

0 is an energy, andE2
0.E1

0. This is the slow
phase, and the longest relaxation time ish−n0−l0

−fsm0d2/ sl0−n0dgj−1.

B. Perturbed solution

Now consider the HamiltonianH, defined through Eq.
(21), which is not necessarily autonomous. Then defining
eAgd like Eqs.(15) but with H instead ofH0, it is seen that
the evolution equation of the one-point function is
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dknil
dt

= aa
1Aa

gdkNi
gNi+1

d l + aa
2Aa

gdkNi−1
g Ni

dl. s34d

However, one cannot necessarily decomposeeAa
gd like Eq.

(14). Assuming translational invariance of the initial condi-
tions, one arrives at

df

dt
= aas1Aa

gd + 2Aa
gddF1

gd, s35d

where

f: = knil,

F1
gd: = kNi

gNi+1
d l. s36d

As hu ,vj is a basis, one can writeF1 in terms of the tensor
products ofu and v. The corresponding coefficients can be
found by multiplying the tensor products ofa and s by F1.
The result is

F1
gd = F1u

gud + fsugvd + vgudd + vgvd. s37d

So

df

dt
= aas1Aa

gd + 2Aa
gddfF1u

gud + fsugvd + vgudd + vgvdg.

s38d

Defining

eBa
gd: = eAa

gd − eA0a
gd, s39d

Eq. (38) recasts to

df

dt
= aas1

1A0a
g sd + 2

1A0a
d sg + 1

2A0a
g sd + 2

2A0a
d sg + 1Ba

gd

+ 2Ba
gddfF1u

gud + fsugvd + vgudd + vgvdg

= sm0 + n0df + s1Bgd + 2BgddfF1u
gud + fsugvd + vgudd

+ vgvdg, s40d

where

eBgd: = aa
eBa

gd. s41d

As expected, the coefficients ofF1 on the right-hand side are
small(first order in terms of the perturbationdH). So one can
use the zeroth-order value ofF1 on the right-hand side to
obtain the first-order value off.

From Eqs.(25) and(27), it is seen that ifE1
0. I0, then one

can write

F1
0 = F̂1

0 +
r0

m0 − l0 − m0 z
f0, s42d

wherez satisfies

m0 + n0 = m0sz+ z−1d + 2n0, s43d

and its modulus is less than 1, andF̂1
0 is like Eq. (31), but

without a term corresponding to the energy valueE1
0=m0

+n0. So one can write Eq.(40) as

df

dt
= sm0 + n0df + s1Bgd + 2BgddS r0

m0 − l0 − m0 z
ugud + ugvd

+ vgudD f + s1Bgd + 2BgddsF̂1u
gud + vgvdd. s44d

This means that the energy values enteringf are those enter-

ing F̂1
0 and

E1: = m + n +
r0

m0 − l0 − m0 z
du, s45d

where

m: = m0 + dm,

n: = n0 + dn,

dm: = s ^ a dH̄u ^ v,

dn: = s ^ a dH̄v ^ u,

du: = a ^ s dH̄u ^ u, s46d

and

dH̄: = dH + P dH P. s47d

This shows that ifE1
0 is the largest nonzero energy value

enteringF1
0, thenE1 is the largest nonzero energy value en-

tering f. Otherwise, the largest nonzero energy value entering
f is the largest nonzero energy value enteringF1

0. So the
relaxation behavior off can be deduced from that ofF1

0 as
follows.

(I) In this phase the largest nonzero energy value off is
2sn0−m0d, and the perturbation causes a discontinuous
change of the largest nonzero energy value, fromE1

0=m0

+n0 to 2sn0−m0d.
(II, V ) In this phase the largest nonzero energy value off

is E2
0, and the perturbation causes a discontinuous change of

the largest nonzero energy value, fromE1
0=m0+n0 to E2

0.
(III, IV ) In this phase the largest nonzero energy value of

f is E1, and the perturbation causes a continuous change of
the largest nonzero energy value, fromE1

0 to E1.
It is seen that the perturbation causes two different

changes in the relaxation behavior off (the one-point func-
tion). In regions I, II, and V, the perturbation causes a dis-
continuous change in the relaxation behavior, which means
that the autonomous system is unstable with respect to per-
turbations. In regions III and IV, however, the relaxation be-
havior of f is continuous with respect to the perturbations,
which means that the autonomous system is stable with re-
spect to the perturbations, at least as long as first-order per-
turbations of the one-point function are considered. Mention-
ing one other thing is also in order:F1

0 enters the evolution
equation off iff duÞ0. If du=0, thenf would contain only
one(nonzero) energy value, which is the one expected from
changing one autonomous system to another.(Only m0 is
replaced bym andn0 is replaced byn.)
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A real autonomous system would in fact be only approxi-
mately autonomous. This means that there are always pertur-
bations around the autonomous system. The above argument
shows that only autonomous systems in regions III and IV
can be effectively autonomous. The parameter space corre-
sponding to the effectively autonomous systems is

−
m0

n0 . −
1

3
,

−
l0

n0 .
s− m0/n0d − 1 +Îf1 + 3s− m0/n0dgf1 − s− m0/n0dg

2
.

s48d

Figure 1 shows the regions corresponding to the autonomous
system.(This is identical to Fig. 1 in[34].)

IV. EXAMPLE

Consider a HamiltonianH0 corresponding to an autono-
mous system:

H0 =
1

41
− 3 + 3v v v 1 − v

1 − v − 3v v 1 − v

1 − v v − 3v 1 − v

1 − v v v − 3 + 3v
2

+ r1
− 1 0 0 0

0 0 0 1

0 0 0 1

1 0 0 − 2
2 . s49d

The reactions of the corresponding system are

xA → any other state, with the ratev/4,

A x → any other state, with the ratev/4,

x x → x A, with the rater + fs1 − vd/4g,

x x → A x , with the rater + fs1 − vd/4g,

x x → AA, with the rates1 − vd/4,

AA→ x A, with the rates1 − vd/4,

AA→ A x , with the rates1 − vd/4,

AA→ x x , with the rater + fs1 − vd/4g. s50d

For this Hamiltonian, one has

v =
1

2
S1

1
D ,

a =
1

2
s1 1d, s51d

and

m0 = − 1 − 2r + 2v,

n0 = − 1 − 2r ,

l0 = −
1

2
− r ,

r0 = r . s52d

For the perturbation, consider the Hamiltonian

dH = «1
− 1 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0
2 . s53d

It is easy to see that this Hamiltonian does not correspond to
an autonomous system. This Hamiltonian only increases the
rate of the reactionAA→ xx by «. Using this Hamiltonian,
it is seen that

dm = − «,

dn = − «,

du = − 2«. s54d

From Eqs.(52), it is seen that

−
m0

n0 = − 1 + 2
v

1 + 2r
,

−
l0

n0 = −
1

2
. s55d

Comparing this with Eq.(48), it is seen that the system is
effectively autonomous iff

v .
5 −Î5

8
s1 + 2rd. s56d

As a special case of the above example, let us putv=1. In
this case, for the nonperturbed system we have the reactions

FIG. 1. Dynamical phase structure in the planes−m0/n0,
−l0/n0d. The thick line is the boundary between effectively autono-
mous systems(right side of the boundary) and effectively nonauto-
nomous systems(left side of the boundary).
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xA → any other state, with the rate 1/4,

A x → any other state, with the rate 1/4,

x x → x A, with the rater ,

x x → A x , with the rater ,

AA→ x x , with the rater . s57d

In this case, the system is effectively autonomous iff

r , r0: =
1

2
+

1
Î5

. s58d

It is seen that changing the value ofr from 0 to +̀ , the
system starts from phase III, passes through phases IV, V,
and II, and finally reaches phase I. Atr =r0, the system goes
from phase IV to phase V, which means that the system is no
longer effectively autonomous.
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